\qquad
Unit 7 Glossary Review
(This review glossary must be turned in on the day of the unit test)

Similar Polygons: 2 polygons are similar only if 2 conditions are met:

1. \qquad
2. \qquad

Similarity Ratio: \qquad
Theorem: The ratio of the Perimeters of 2 similar polygons $=$ \qquad .

Theorem: The ratio of the Areas of 2 similar polygons $=$ \qquad .

"Splitter" Theorems

प Side Splitter Theorem:	A Angle Splitter Theorem:
Picture:	Picture:

Δ Similarity Theorems:

1. AA Similarity: \qquad -
2. SAS Similarity: \qquad .
3. SSS Similarity: \qquad .
Δ Similarity Result: If 2Δ 's are similar then, the ratios of corresponding sides are \qquad .

Cross Multiplication Postulate:

In a proportion, the product of the \qquad $=$ the product of the \qquad .

Right Triangles:

Pythagorean Theorem:	Altitude Rule:	Leg Rule:
Picture:	Picture:	Picture:

Pythagorean Converse: if c is the hypotenuse and $a \& b$ are the legs of a right Δ, then:

1. If $a^{2}+b^{2}<c^{2}$, then $\triangle A B C$ is a \qquad triangle.
2. If $a^{2}+b^{2}=c^{2}$, then $\triangle A B C$ is a \qquad triangle.
3. If $\mathrm{a}^{2}+\mathrm{b}^{2}>\mathrm{c}^{2}$, then $\triangle \mathrm{ABC}$ is a \qquad triangle.

Special Right Triangles:

45-45-90	30-60-90 Picture:

